Methodological Approaches to Electricity **Consumption Forecast on Electric Cars**

Elena Bykova¹, Irina Vasiliev²

¹PhD, Institute of Power Engineering, TUM, Republic of Moldova Email: bicovaelena279[at]gmail.com

²Institute of Power Engineering, TUM, Republic of Moldova Email: vasiliev_irina[at]yahoo.com

Abstract: The paper describes methodological approaches to electricity consumption of electric vehicles in Moldova based on real data for 3 years using 2 forecasting methods. The linear trend has a more pessimistic growth, while the regression trend has slightly higher values and optimistic growth. The discrepancy between the predicted values by the two methods was 5.1%.

Keywords: Forecast, electric cars, methods, value

1. Introduction

The number of electric vehicles is gradually growing. The network of charging stations is also expanding, and the use of electricity in vehicles is constantly increasing [1]. For example, in 11 months of 2021, the number of charging station customers increased to 2227. The number of charging sessions and the number of charging hours also increases every next month.

The total number of cars in the country reaches more than 1 million units [2], Table 1.

Table 1. Vahiala antenania

Table 1: Vehicle categories									
	on 1.07.2022	on 1.05. 2023	on 1.06. 2024						
Vehicle	number	number	number						
Car	731 332	755 929	809 461						
Truck	207 269	211 369	217 938						
Trailer	68 517	72 092	76 717						
Tractor	57 162	59 603	62 821						
Motorcycle	53 374	56 221	62 032						
Bus	21 073	21 075	21 189						
Semitrailer	12 488	12 008	11 535						
Other	0	0	0						
Total	1 151 215	1 188 297	1 261 693						

*) public services agency www.date.gov.md

The number of electric vehicles is still small (for 2021 - less than 1000 and hybrid cars - about 30 000 units, there is no data for other years), but their number is growing every year.

In this regard forecasting the growth of electricity consumption by electric vehicles and what GHG emissions can take place in this case, is relevant, Figure 1.

The goal of this work is to build forecasts of electricity consumption by electric vehicles for 5 and 20 years ahead based on the available data for three years using available forecasting methods, to compare the values obtained and to make a choice of method for further use.

	Energy Sources	Consumption	Emissions
Conventional			
Hybrid		iiii + 🚺	•6
Plug-In Hybrid	- +	* +	•6
All-Electric	L i		ିନ

Figure 1: Emissions from electric vehicles compared to other types of vehicles

2. Calculations of forecasts for horizon 5 years

The primary data series includes 36 points -electricity consumption by electric cars during three years, table 2 and figure 2.

Table 2: Electricity const	umption at charging station	ons during months 2021-	2023 and numbers of points
----------------------------	-----------------------------	-------------------------	----------------------------

		<i>j</i> •••••••	mp nom u	. •	Bound		,				or point	0
Number of point	1	2	3	4	5	6	7	8	9	10	11	12
kWh, 2021	8219	9810	12895	13294	12406	13217	16298	15004	17564	17928	18920	19994
Number of point	13	14	15	16	17	18	19	20	21	22	23	24
kWh, 2022	12361	14754	19394	19994	18659	19878	24512	22566	26416	26964	28456	30071
Number of point	25	26	27	28	29	30	31	32	33	34	35	36
kWh, 2023	16551	19755	25967	26771	24982	26616	32820	30214	35369	36102	38100	40262

International Journal of Scientific Engineering and Research (IJSER) ISSN (Online): 2347-3878 Impact Factor (2020): 6.733

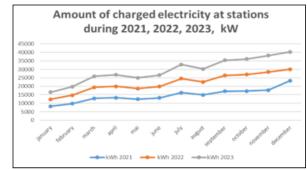


Figure 2: Primary data of electricity consumption by electric cars for 3 years

Forecasts are based on 2 methods available in Excel - linear trend and regression (Analysis Package).

The linear trend has the equation y = 711.89x + 8860.2 with R2 = 0.8254, figure 3.

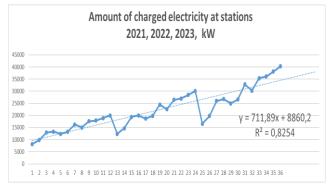


Figure 3: Forecast (linear trend) of the amount of charged electricity

Line Regression is built also and shown in figure 4.

Figure 4: Forecast (regression) of the amount of charged electricity at stations (kWh)

The values of the forecast points for the linear trend are calculated using the obtained equation and are given in table 3, column "Linear trend", and the regression values are given in the column "Linear regression".

Also, in the table is shown the lower and upper boundaries and % of deviation of the values for each point, Figure 3.

Table 3: Forecast electricity consumption on 2 methods- line
trend and line regression

	trend and line regression									
Forecast electricity consumption, kWh										
		Line Line Lower Upper								
			trend	regression		Boundary		Boundary		
1		37	35200	29008	17,6	25510	27,5	32507	7,7	
2		38	35912	31400	12,6	27874	22,4	34927	2,7	
3		39	36624	35932	1,9	32377	11,6	39487	-7,8	
4		40	37336	36408	2,5	32824	12,1	39992	-7,1	
5		41	38048	34906	8,3	31294	17,8	38519	-1,2	
6	2024	42	38760	36291	6,4	32649	15,8	39932	-3,0	
7	20	43	39471	40232	-1,9	36562	7,4	43903	-11,2	
8		44	40183	38676	3,8	34976	13,0	42376	-5,5	
9		45	40895	41915	-2,5	38185	6,6	45644	-11,6	
10		46	41607	42398	-1,9	38639	7,1	46158	-10,9	
11		47	42319	43678	-3,2	39889	5,7	47467	-12,2	
12		48	43031	44296	-2,9	40476	5,9	48115	-11,8	
1		49	43743	36597	16,3	32747	25,1	40447	7,5	
2		50	44455	38989	12,3	35108	21,0	42870	3,6	
3		51	45167	43521	3,6	39609	12,3	47432	-5,0	
4		52	45878	43997	4,1	40054	12,7	47939	-4,5	
5		53	46590	42495	8,8	38521	17,3	46469	0,3	
6	2025	54	47302	43879	7,2	39874	15,7	47885	-1,2	
7	2(55	48014	47821	0,4	43784	8,8	51858	-8,0	
8		56	48726	46265	5,1	42196	13,4	50333	-3,3	
9		57	49438	49504	-0,1	45403	8,2	53604	-8,4	
10		58	50150	49987	0,3	45855	8,6	54120	-7,9	
11		59	50862	51267	-0,8	47102	7,4	55432	-9,0	
12		60	51574	51884	-0,6	47687	7,5	56082	-8,7	
1		61	52285	44186	15,5	39955	23,6	48416	7,4	
2		62	52997	46578	12,1	42315	20,2	50841	4,1	
3		63	53709	51109	4,8	46813	12,8	55406	-3,2	
4		64	54421	51586	5,2	47256	13,2	55915	-2,7	
5		65	55133	50084	9,2	45721	17,1	54447	1,2	
6	2026	66	55845	51468	7,8	47072	15,7	55865	0,0	
7	2(67	56557	55410	2,0	50979	9,9	59840	-5,8	
8		68	57269	53853	6,0	49389	13,8	58318	-1,8	
9		69	57981	57092	1,5	52594	9,3	61591	-6,2	
10		70	58693	57576	1,9	53043	9,6	62109	-5,8	
11		71	59404	58856	0,9	54289	8,6	63423	-6,8	
12		72	60116	59473	1,1	54871	8,7	64075	-6,6	
1		73	60828	51775	14,9	47138	22,5	56412	7,3	
2		74	61540	54167	12,0	49495	19,6	58839	4,4	
3		75	62252	58698	5,7	53991	13,3	63405	-1,9	
4		76	62964	59174	6,0	54432	13,6	63916	-1,5	
5	27	77	63676	57673	9,4	52895	16,9	62450	1,9	
6	2027	78	64388	59057	8,3	54244	15,8	63870	0,8	
7		79	65100	62999	3,2	58150	10,7	67848	-4,2	
8		80	65811	61442	6,6	56557	14,1	66327	-0,8	
9		81	66523	64681	2,8	59760	10,2	69602	-4,6	
10		82	67235	65165	3,1	60208	10,5	70122	-4,3	
11		83 Distinc	67947 Linear	66445 linear	2,2	61451	9,6	71438	-5,1	
		tions	trend	regression	5,1%	AVERAGE	13,4%	Average	-3,2%	

The average value of the discrepancies is 5.1% for main values.

The figure shows a graphical visualization of the predicted values for both approaches, and it can be seen that the regression trend also reflects the nonlinear fluctuations that occurred during the year. For calculations, it can be simply used a linear trend, since the total discrepancy of values is on average 5.1%. figure 25.

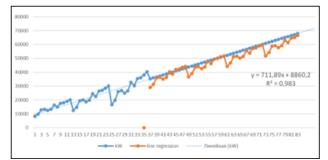


Figure 5: Comparative 2 Methods for Predicting the Amount of Electricity in Charging Stations (kWh)

Conclusion on forecasts

The linear trend has a more pessimistic growth, while the regression trend has slightly higher values and optimistic growth.

3. Assessment electricity consumption by electric cars for the next 20 years

The time series that was used for 5-year forecasts is not sufficient for 20-year forecasts. For our task, we can simply calculate based on the average % growth in electricity consumption per month.

The percentage changes for each month of 2021 compared to the previous month are shown in the table 4. This is the only available series of values at the moment, but this data can be used to calculate the average increase for each month.

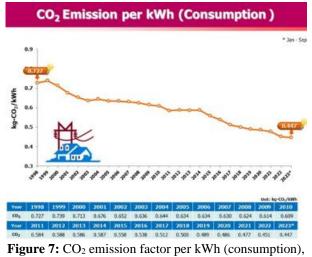
The average increase for each month is 0.61%, which can give 7.3% for one year and 146.3% for 20 years (with the same initial data). Thus, consumption in 2043 may amount to 517 345 kWh.

 Table 4: Calculation of electricity consumption for the next

 20 years

20 years									
	2021	2022	2023	2024	2043				
	Fact	Fact	Fact	Growth in one year	Growth in 20 years				
%				7,3	146,3				
kWh	175 549	264 026	353 509	379 377	517 345				

4. Estimation of greenhouse gas emissions using the CO₂ emission factor per kWh


Greenhouse Gas Emissions are calculated by multiplying the electricity consumed during the reporting year by appropriate emission factors, using formula:

Emissions=Electricity*EF Where: Emissions= mass of CO_2 emitted Electricity = the amount of electricity consumed $EF = CO_2$ emission factor per kWh

According to statistical data, the average CO_2 emission factor per kWh (generation) in the world decreased from 0.636 (1998) to 0.407 (2023) and average CO_2 emission factor per kWh (consumption) decreased from 0.727 (1998) to 0.447 (2023) [5], fig.6-7.

Figure 6: CO₂ emission factor per kWh (generation), during the period 1998-2023

during the period 1998-2023 Source: <u>CO₂ Statistic (eppo.go.th)</u>

When selecting emission factor, it is important to consider import and export of electricity at a country level for calculation. There is a Methodological Approach for the Common Default Grid Emission Factor Dataset (https://unfccc.int/sites/default/files/resource/IFITWG_Meth odological_approach_to_common_dataset.pdf) [3] and 2023 documentation Emission factors database (https://iea.blob.core.windows.net/assets/bf862218-7fd8-4637-aca6-5a347b6ca4f1/IEA_Methodology_Emission_Factors_2023.pdf) [4] where it is described how to calculate grid Emission factor.

In this work it was decided to use the default grid emission factor $(541 \text{ gCO}_2/\text{kWh})$ available at https://unfccc.int/documents/437880 [3], separately for Republic of Moldova.

Emissions from the electricity consumed by electric cars for the next 20 years are presented in table 5.

 Table 5: Calculated GHG Emissions from electricity

consumed by electric cars for the next 20 years								
	2021	2022	2023	2024	2043			
tonn CO ₂	95.0	142.8	191.2	205.2	279.9			

It should be noted that the latest official national grid emission factor for the Republic of Moldova, which was

Volume 12 Issue 11, November 2024 www.ijser.in

Licensed Under Creative Commons Attribution CC BY

used in the CDM project, was calculated in 2020 and amounted to 547 $g\mathrm{CO}_2/k\mathrm{Wh}.$

[4] https://iea.org

[5] https://gd.eppo.int/

5. The Way Forward

In order to increase the number of electric vehicles in the Republic of Moldova and to minimize the cost of charging electric vehicles, as well as to equalize the maximum load caused by charging electric vehicles during peak hours, it is proposed to analyze for the future installation of photovoltaic panels for electric vehicle charging stations.

Figure 7: Design of charging stations for electric vehicles (using PVS panel)

6. Conclusions

An analysis was conducted using two methods - linear trend and linear regression for real values of electricity consumption by electric vehicles in Moldova.

The time series consisted of 36 points (36 months), the forecast was built for 5 years.

The linear trend has a more pessimistic growth, while the regression trend has slightly higher values and optimistic growth.

The discrepancy between the predicted values by the two methods was 5.1%.

Emissions from electricity consumed by electric cars in 2043 will amount to 279.9 tons of CO_2 .

References

- [1] <u>https://cned.gov.md/</u>
- [2] www.date.gov.md
- [3] https://unfccc.int

Author Profile

Elena Bykova, scientific researcher, PhD, Head of the Laboratory of Energy Security, Modelling Development of Power Systems of the Institute of Power Engineering, TUM. Professional interests are: systems analysis in the energy sector, development of energy

systems, process modelling in the energy sector, controlled transmission lines, the methodology and monitoring indicators of the energy security, monitoring GHG-emissions, forecast and studies of energy balance, methods of prognoses in energy sector.

Irina Vasiliev, Master Degree, researcher of the Laboratory of Energy Security, Modelling Development of Power Systems of the Institute of Power Engineering, TUM. Professional interests are: methodology of calculating and monitoring indicators for the energy security, modern technologies of production of electricity and heat, monitoring GHG-emissions, energy balance and energy

statistics, perspective development of energy sector

Volume 12 Issue 11, November 2024 <u>www.ijser.in</u> Licensed Under Creative Commons Attribution CC BY