
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2024): 7.741

Volume 12 Issue 7, July 2024

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

A Technical Solution for Data Indexing Technology

in Plagiarism Checker

Yatheendra KV1, Dr. Sudhakara Arabagatte2

1Research Scholar, College of Computer Science, Srinivas University, Mangalore, India

Email: yatheendra72[at]gmail.com

2Professor, College of Computer Science, Srinivas University, Mangalore, India

Email: sudhakara.mysore[at]gmail.com

Abstract: Plagiarism is considered a serious academic and ethical offense, as it undermines the values of originality, honesty, and

integrity in academic and creative work Plagiarism detection is the process of locating instances of plagiarism within a work or

document. The widespread use of computers and the advent of the Internet have made it easier to plagiarize the work of others. Most

cases of plagiarism are found in academia, where documents are typically essays or reports. Here I am working with a team to support

their process. Counterfeiting identification is the way toward finding examples of written falsification inside a work or archive. The far -

reaching utilization of PCs and the appearance of the Internet have made it less demanding to appropriate the work of others. Most

instances of written falsification are found in the scholarly world, where records are regularly articles or reports. Here working with a

group to bolster their procedure. We are facing many challenges to develop this sort of software. So, mainly the data indexing methods

are very interesting in this case. Here we are exposing how data indexing methodology works using ‘Taylor series’ formula in cloud -

based storage for data indexing.

Keywords: Indexing, Encryption, Data Sequence, Search Key

1. Introduction

Data indexing technology is the process of creating an index

or catalog of the content of a collected of texts or other, to

facilitate efficient searching, retrieval, and analysis. This is

the process of creating an index or database of searchable

terms or keywords that can be used to quickly find specific

pieces of text. There are several ways to do text indexing,

but one common method is using search engines or

specialized software tools. In the market they have indexing

methodologies like Apache Lucene, Elasticsearch, and Solr

etc. ., but they have some character limitations. Ex:

Languages are Urdu, Arabic or Persian are Right to Left

languages, you can’t make sure others are providing best

accuracy in this, so avoiding such sort of issue we can make

it our own indexing protocol. Eventually, our indexing

process involves identifying the key concepts, terms, or

entities that are important for describing the content of the

texts, and creating an index that URL maps these concepts

to the locations in the texts where they occur. This allows

users to search for specific words or phrases and retrieve

relevant texts quickly, rather than having to read through the

entire collection. Text data indexing is a fundamental

technique in many information retrieval systems of

plagiarism checking. The core characters and supporting

characters, in each language containing more than 125

characters and referenced by minimum four length of

Unicode characters, Example in letter ‘A’ Unicode is

U+0041. Here, if all text data come with all characters, the

indexing level in a single cloud storage platform goes to a

very high level, if huge numbers of indexing level will kill

the searching operation during the plagiarism checker

process. And it will take more operational expenses and

delay. On the other end we have to find and avoid some

special non - indexing characters. These non - indexing

characters will create exception status and sometimes it will

create crashes in operation during implementation.

Commonly non - indexing refers to ‘: ? > < * \ /’ but in the

case of all characters we can cover almost 22*150

(including special) characters should be a level of initial

indexing methods. The indexing will be done by organizing

a tree structure of data which finally refers to the position of

a cloud - based file path. A single text file is divided into

multiple selected sequences according to our algorithm, and

sequence removed duplication to avoid indexing ambiguity.

This sequence is passed to the index number of levels until

destination. Finally, the indexed file will store the cloud data

path to refer to the same file path for referencing and the

indexed results must return to be accurate and relevant. Our

code executes approximately 20 million sequences in 100 -

120 seconds, which means fast and indexing successive rate

is 99.99%. we reached the best time and space complexity

as our indexing expectation. The best indexing process we

have done using the Taylor series is the polynomial formula

explanation.

2. Experimental Method

A single file data can be split into several sequences. Ex: if

you have 100 kb of text data may split into more than 3000

sequences, each sequence is a combination of consecutive

characters. In a language letter ‘A’ is finding his Unicode

character is ‘U+0041’, if you are running 64 bit of your

cloud server then you can divide Unicode ‘0041’ to 16 bits

binary base 2 (OC85) converter level. Means 0 (decimal 00)

=> 0000000000000000, C (decimal 83) =>

0000000001010011, 8 (decimal 72) => 0000000001001000

and 5 (decimal 69) => 0000000001000101. After combining

all binary sequences, we get 64 digits (same as 64 bit of

your cloud server data transfer bus) of value. Finally, u will

get mod%4 operation using all 64 binary digits. We will get

binary sequences 0000 0000 0001 0000, 0000 0010 0010

0011, 0000 0001 0000 0000 and 0000 0011 0000 0000.

Later if you convert decimal from signed 2's complement

Paper ID: SE24717111645 13 of 17

www.ijser.in
http://creativecommons.org/licenses/by/4.0/
mailto:yatheendra72@gmail.com
mailto:sudhakara.mysore@gmail.com

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2024): 7.741

Volume 12 Issue 7, July 2024

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

with mod%10 operation you will get values 0C85 (input) to

6769 (output). We can conclude her search key is 0C85,

indexed data is 6769, and sequence is 16 bits binary values.

3. Other Indexing Structure

In plagiarism process data indexing, an indexing structure is

a data structure sequence used to store and organize data for

efficient search and retrieval. It is used in plagiarism

applications such as plagiarism search engines, databases,

and file systems. Here we are used four types of indexing

structures plagiarism checking application explained below:

Hash table: A hash table is an indexing data structure that

uses a hash function to map sequence keys to values. It

provides constant - time average - case performance for

search operation from large index of data, here hash index

divided in to three different layers called sequency key,

storage buffer and hashing, internally all three layers are

mapped with proper data and values.

B- tree: A B - tree is a balanced tree data structure that is

commonly used in databases and file systems. It allows for

efficient search, insertion, and deletion operations.

In our plagiarism indexing methodology mainly B - tree we

are exposed in link indexing methods, we have here more

than 300 billion of links data indexed in hashing point, but

separately all links are indexed to b - tree methods for

avoiding indexing ambiguity. In main domain https: //abcd.

com referenced to other sub links, same other sub links

referenced others until ends of link from same domain.

Inverted index: An inverted index is an indexing data

structure used in search engines to store the mapping

between words and the documents that contain them. It

allows for efficient full - text search operations.

In invert indexing we mainly used for Digital Object

Identifier (DOI) article tracking purpose, In our plagiarism

system all links segregated by two variants one is absolute

links other is DOI. The absolute links are already used in B -

tree indexing methods and same for DOI indexing we can

expose the invert indexing methodology for identification

and tracking total article available in our data base for

avoiding duplicate article download and index.

Pixel index: A pixel index is a data indexing structure used

in databases to store the presence or absence of digital

values in rows and columns like X and Y axis. It allows for

efficient boolean operations such as AND, OR, and NOT.

The choice of indexing structure depends on the type of data

being indexed and the operations that need to be performed

on it.

This sort of indexing method is mainly described in the

image indexing process, during image indexing all image

can be extracted into number of pixels referenced by RGB

color coding. Indexing can be done according to X and Y

axis direction.

4. Objectives

Data cleaning: Data cleaning refers to the process of

identifying and correcting or removing errors,

inconsistencies, and inaccuracies from a dataset. It is an

important step in the data analysis pipeline as the quality of

the data directly impacts the accuracy and reliability of the

insights obtained from it. The data cleaning process

typically involves major steps in data indexing in plagiarism

checking. This involves identifying missing values,

duplicates, and outliers in the dataset. This is often done

using statistical analysis or visualization tools. Once errors

have been identified, they can be corrected by either

Paper ID: SE24717111645 14 of 17

www.ijser.in
http://creativecommons.org/licenses/by/4.0/
https://abcd.com/
https://abcd.com/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2024): 7.741

Volume 12 Issue 7, July 2024

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

imputing missing values or removing outliers. Then it

converts data into a common format, such as converting

dates into a standard format or normalizing text data to

remove inconsistencies.

Data modeling: Data modeling is the process of creating a

conceptual representation of data and its relationships to

facilitate efficient data storage, retrieval, and analysis. It

involves identifying the entities, attributes, and relationships

that are important in the context of a specific problem or

application domain. Data modeling defines the entities and

their relationships without including details of how they are

implemented. Further it specifies the entities, attributes, and

relationships in a more concrete and implementation -

independent way. In physical data model that specifies the

details of how the data is stored, including data types, keys,

indexes, and other implementation - specific details. Data

modeling is a crucial step in the process of designing and

building effective databases and data - driven applications.

It helps ensure that the data is organized and structured in a

way that enables efficient retrieval and analysis, and that it

supports the business requirements of the application or

problem domain.

Index Testing: Index testing is a testing technique that is

used to evaluate the performance of a text data index.

Plagiarism indexes are data structures that are used to speed

up data retrieval operations in a database. Index testing is

performed to ensure that indexes are working correctly and

that they are providing the expected performance benefits.

The primary goal of index testing is to ensure that the

database queries are being executed efficiently and with

high performance. The testing process in plagiarism

involves executing a set of predefined queries on the

database and measuring the response times. The response

times are compared against predefined performance criteria,

and any performance issues are identified and addressed.

Index testing can be performed manually or using

plagiarism customized automated testing tools. This tool can

help to speed up the testing process and provide more

accurate and consistent results. It is crucial to perform index

testing regularly to ensure that the database is functioning

optimally and delivering the expected performance benefits.

Sequence Combination

Data sequence refers to the order or arrangement of data

elements or items in a dataset for plagiarism data indexing

purpose purely operated by machine learning algorithm.

Here mainly the order of data elements is important and can

have a significant impact on how the data is analyzed or

processed. For example, in a time - series dataset, the

sequence of data points represents the order in which the

measurements were taken over time. In natural language

processing, the sequence of words in a sentence can be

crucial in determining the meaning of the sentence. In data

science and machine learning, sequence data is often

analyzed using sequence models, which are specialized

algorithms that can handle the temporal or sequential nature

of the data. Some of important data sequences is segregated

in Plagiarism are:

1) 5 words sequence (Normal Data).

2) 14 words sequence (Normal Data).

3) Quotes sequence

4) Reference sequence.

The sequence is an important aspect of many datasets, and

understanding the order or arrangement of data elements is

often crucial in the analysis and processing of the data.

Sequence models are commonly used to analyze and extract

insights from sequence data, and the analysis of data

sequences can help to solve a wide range of problems in

similarity check processing.

5. Results and Discussion

According to our indexing process, Taylor series is the

polynomial, and it is a function of an infinite sum of

sequence terms. Each successive sequence term will have a

more exponent sequencing degree than the indexing term. A

data reference is always pointing to a search key variable,

then the sequence is pointing to a data reference variable

similarly it’s a triangle workflow of all referencing paths.

When the formula enters an iterative process the Taylor

series algorithm creates an index of the text data using

encryption method, which includes the key terms and

keywords they have automatically identified. This typically

involves creating an inverted index, which maps terms to the

search key where they appear. This process works like

A=>B, B=>C and C=>A. In all search key, data reference

and sequences workflow under Taylor series flow, here f (x)

assigning all set of differentiable function [f (x) = f (a) + f'

(a) (x − a) + [f′′ (a) /2! (x − a) 2] +…+], where function (f

called search key), neighbourhood number (a called data

reference) and composite value (x called sequence). Finally,

the f (x) search method holds all three operations for finding

searchable value within a short time during the plagiarism

checking process.

In other hand objectives involves data cleaning, data

modeling and indexing refers to different level on indexing

terms, in our plagiarism process data may contains text,

images, video only. Video may be consisted by links

indexing methods but on the other hand text and image are

main part of similarity text models while similarity process.

All the process may be executed by huge and complex

machine learning algorithms, it may be executed under best

time, lesser space and good quality levels of processing.

Time Complexity:

Time complexity is a measure of the amount of time

required by an algorithm to solve a indexing problem as a

function of the input sequence size. It is often expressed

using Big O notation, which describes the upper bound of

the time required by an algorithm as the input size

approaches infinity. The time complexity of an algorithm is

important during indexing because it helps to determine the

efficiency of the algorithm and whether it is feasible to use

for a given problem size. An algorithm with a lower time

complexity is generally more efficient than an algorithm

with a higher time complexity. For example, consider a

simple algorithm that sorts an array of n sequence (1000

sequence) using bubble sort, while n is a level of indexing to

reach final path. The time complexity of this algorithm is O

(n^2), which means that the worst - case time required by

the algorithm grows quadratically with the input size. This

means that as the input size increases, the time required by

Paper ID: SE24717111645 15 of 17

www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2024): 7.741

Volume 12 Issue 7, July 2024

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

the algorithm will increase much faster than the size of the

input itself.

Space Complexity:

Space complexity is a measure of the amount of memory

required by an algorithm to solve a problem as a function of

the input size. It is often expressed using Big O notation,

which describes the upper bound of the amount of memory

required by an algorithm as the input size approaches

infinity. The space complexity of an algorithm is important

because it helps to determine the amount of memory

required by the algorithm and whether it is feasible to use

for a given problem size. An algorithm with a lower space

complexity is generally more memory - efficient than an

algorithm with a higher space complexity. For example,

consider a simple algorithm that computes the factorial of a

number ‘n’ using recursion or iteration. The space

complexity of this algorithm is O (n), which means that the

amount of memory required by the algorithm grows linearly

with the input size. This means that as the input size

increases, the amount of memory required by the algorithm

will increase proportionally to the size of the input itself.

Here in plagiarism 100 KB files are divided into 1000

sequences and 5 level of destination path, each sequence is a

combination of maximum 100 characters, so our calculation

is 100 * 1000 * 5 = 5, 00, 000 bytes required, finally in 4807

KB for big O (n).

Indexing Quality: Indexing quality refers to the accuracy

and completeness of an index, which is a data structure used

to optimize data retrieval operations. An index is typically

created on one or more columns of a database table to allow

fast access to the data based on specific criteria, such as a

particular value or range of values in the indexed columns.

The quality of an index is determined by several factors,

including its selectivity, uniqueness, and efficiency. All

these to produce 99.99% accuracy while in similarity

indexing performance. An index is considered selective if it

can filter out many rows from the table based on the indexed

columns. This means that the index can significantly reduce

the amount of data that needs to be scanned to retrieve the

required data, resulting in faster query performance. An

index is considered unique if it ensures that each index entry

corresponds to a unique row in the table. This is important

to prevent duplicate data from being returned in query

results and to maintain data consistency. An index is

considered efficient if it minimizes the amount of disk space

required to store the index and the amount of memory

required to perform index lookups. This is important to

ensure that the index does not consume excessive system

resources and to maintain good overall system performance.

In addition to these factors, the quality of an index can also

be impacted by factors such as the data distribution, the data

types of the indexed columns, and the workload

characteristics. To ensure high - quality indexing, it is

important to carefully design and evaluate the indexes used

in a database. This involves selecting appropriate indexed

columns, tuning index parameters, and regularly monitoring

index usage and performance. Proper indexing can

significantly improve the performance of database queries

and overall system efficiency.

6. Conclusion

From the above technical information finally, we conclude

that our regional language indexing methodology is one of

best data indexing technology in our plagiarism checking

process. Large number of data sequences will be indexed

with less duration compared to other open - source indexing

technology. This sort of complex work done by Taylor

series logic and security part used binary encryption

sequences, both mentioned in our solution index encryption

part. Above we discussed different modes of objectives

called data cleaning, data modeling and index testing. Other

way sequence combination shows different types of

sequence structure, so finally the operation can be executed

under time and space complexity. It gives the best Big O

model to achieve 99.99% performance during the plagiarism

process.

References

[1] J. Li, Z. Xu, Y. Jiang, and R. Zhang, “The overview of

big data storage and management. cognitive

informatics cognitive computing (icci*cc) „” in IEEE

13th International Conference on, (pp.510 - 513, 2014.

[2] C. Liu, R. Ranjan, X. Zhang, C. Yang, D.

Georgakopoulos, and J. Chen, “Public auditing for big

data storage in cloud computing - , ” in A Survey.

Computational Science and Engineering (CSE), 2013

IEEE 16th International Conference on, (pp.1128 -

1135)., 2013, Dec.

[3] H. Tan, W. Luo, and L. M. Ni, “Clost: A hadoop -

based storage system for big spatio - temporal data

analytics., ” in Proceedings of the 21st ACM

International Conference on Information and

Knowledge Management (pp.2139 - 2143). New York,

NY, USA: ACM., 2012.

[4] W. Zhou, C. Yuan, R. Gu, and Y. Huang, “Large scale

nearest neighbors search based on neighborhood

graph, ” in Advanced Cloud and Big Data (CBD),

2013 International Conference on, pp.181–186, Dec

2013.

[5] H. Nakada, H. Ogawa, and T. Kudoh, “Stream

processing with bigdata: Sss - mapreduce, ” in Cloud

Computing Technology and Science (CloudCom),

2012 IEEE 4th International Conference on, pp.618–

621, Dec 2012.

[6] T. Chardonnens, “Big data analytics on high velocity

streams, ” Master’s thesis, University of Fribourg

(Switzerland), June 2013.

[7] F. Amato, A. De Santo, F. Gargiulo, V. Moscato, F.

Persia, A. Picariello, and S. Poccia, “Semtree: An index

for supporting semantic retrieval of documents, ” in

Data Engineering Workshops (ICDEW), 2015 31st

IEEE International Conference on, pp.62–67, April

2015.

[8] Cambazoglu BB, Kayaaslan E, Jonassen S, Aykanat C

(2013) “A term - based inverted index partitioning

model for efficient distributed query processing”.

ACM Trans Web 7 (3): 1–23. doi: 10.1145/2516633.

2516637

[9] Bast H, CelikikM (2013) “Efficient fuzzy search in

large text collections”. ACM Trans Inf Syst 31 (2): 1–

59. doi: 10.1145/2457465.2457470

Paper ID: SE24717111645 16 of 17

www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2024): 7.741

Volume 12 Issue 7, July 2024

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

[10] Paul A, Chen B - W, Bharanitharan K, Wang J - F

(2013) “Video search and indexing with reinforcement

agent for interactive multimedia services. ” ACM

Trans Embed Comput Syst 12 (2): 1–16. doi:

10.1145/2423636.2423643

[11] Kadiyala S, Shiri N (2008) “A compact multi -

resolution index for variable length queries in time

series databases. ” Knowl Inf Syst 15 (2): 131–147

[12] Wu K, Shoshani A, StockingerK (2010) “Analyses

ofmulti - level and multi - component compressed

bitmap indexes”. ACM Trans Database Syst 35 (1): 1–

52.

[13] Cheng J, Ke Y, Fu AW - C, Yu JX (2011) Fast graph

query processing with a low - cost index. VLDB J 20

(4): 521–539

[14] Sebastiani F (2002) “Machine learning in automated

text categorization”. ACM Comput Surv 34 (1): 1–47.

doi: 10.1145/505282.505283

Paper ID: SE24717111645 17 of 17

www.ijser.in
http://creativecommons.org/licenses/by/4.0/

