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Abstract: Inverters, AC contactors and other equipment used in high-tech manufacturing are very sensitive to voltage sags. Voltage sags 

may cause equipment failure, production interruption, data loss, damage to sensitive equipment and unstable energy supply. A short 

circuit fault may trigger multiple power quality monitoring devices to record voltage sag waveforms. The problem of voltage sag data 

redundancy seriously affects data application. Therefore, identifying the source of voltage sags is of great significance for scientifically 

and rationally evaluating the severity of regional power grid voltage sags. Therefore, this paper proposes a voltage sag source 

identification algorithm based on the DBSCAN algorithm. By adopting appropriate feature engineering, three-dimensional clustering 

features are selected, and then appropriate clustering algorithm parameters are selected through iterative method for clustering. Finally, 

the algorithm effect is evaluated through six clustering evaluation indicators. Experiments were conducted on the jupyter notebook 

programming platform using data provided by a provincial power company. The final results prove the effectiveness of the proposed 

algorithm. 
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1. Introduction 
 

Voltage sags cause production interruptions in precision 

processing industries such as microelectronics and intelligent 

control, resulting in huge economic losses for users and 

becoming the most complained power quality problem [1], 

[2] . A short circuit fault may trigger multiple power quality 

monitoring devices to record voltage sag waveforms. The 

redundancy of voltage sag data seriously affects data 

application [3], [4] and may cause overestimation of the 

severity of regional power grid voltage sags [5] . At the same 

time, repeated analysis of multiple data caused by the same 

voltage sag source will increase the computational intensity 

and complexity. Identifying multiple voltage sag events as 

the same voltage sag source is an urgent problem to be solved 

in the field of power quality monitoring. Identifying the same 

source of voltage sags can reduce the data redundancy of the 

power quality monitoring system of the power grid and avoid 

overestimation of the regional power quality level. It is a 

necessary prerequisite for clarifying the power quality level 

of the regional power grid and is of great significance for 

scientifically and rationally evaluating the severity of 

regional power grid voltage sags. 

 

Identification of the source of voltage sags is to classify 

multiple voltage sag data monitored in a short period of time, 

and classify the voltage sag monitoring data triggered by the 

same voltage sag source into one category. In recent years, a 

large number of studies have been carried out on the source of 

voltage sags at home and abroad. Existing research mainly 

includes feature extraction and selection [6], data mining and 

machine learning algorithms [7], [8], [9], and algorithm 

fusion and integration [10]. 

 

In summary, this paper proposes a homology identification 

method based on the DBSCAN algorithm, and conducts a 

clustering experiment using 10049 temporary drop data 

provided by a provincial power company. Finally, six 

clustering evaluation indicators are evaluated on the 

clustering results to prove the accuracy and effectiveness of 

this experiment. 

 

2. Related Concepts 
 

2.1 Basic knowledge of voltage sag 

 

2.1.1  Definition of voltage sag 

Voltage sag (also known as voltage sag, dip or sag) refers to a 

transient disturbance phenomenon in which the voltage root 

mean square value temporarily drops to 90%~10% of the 

rated voltage amplitude and lasts for 0.5~30 cycles [11] . 

Voltage sag is extremely harmful, and more than 70% of 

power quality problems are caused by voltage sag. The 

classification of voltage sag sources is the premise for 

understanding the inherent properties and laws of voltage sag 

events. 

 

2.1.2  Source of voltage sag 

Voltage sags in power systems can be caused by a variety of 

factors [12], [13], the following are some of the most 

common ones: 

 

1) Load change: When the load in the power system increases 

suddenly, such as when large mechanical equipment is 

started, air conditioning systems are put into operation, or 

there is a sudden large-scale power consumption, the system 

voltage will temporarily drop. This is because the power 

system needs to adapt to the load change in a short period of 

time, and it may take some time to return to normal voltage 

levels. 

 

2) Short circuit fault: In the power system, a short circuit fault 

refers to a direct connection between two circuits or wires 

with different voltages. This will cause a sudden increase in 

current, resulting in a temporary drop in system voltage, and 

may trigger the action of protective equipment to isolate the 

fault point. 

 

3) Action of overcurrent protection device: In the power 

system, overcurrent protection device is used to detect 
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abnormal current in the system to protect equipment and 

circuits from damage due to overload or short circuit fault. 

When the overcurrent protection device is activated, it may 

cut off the circuit or reduce the current, causing a temporary 

drop in system voltage. 

 

4) System failure or fault recovery: Faults in the power 

system, such as generator failure, transformer failure, or 

transmission line failure, can cause voltage sags. When these 

faults are repaired or the system is restored, the voltage will 

gradually return to normal levels. 

 

2.1.3  Voltage sag hazards 

Voltage sag may cause some damage to power systems and 

related equipment [14], [15] , including: 

 

1) Equipment failure: Voltage sags may cause equipment 

failure or damage. Low voltage levels may not provide 

sufficient power supply, causing the equipment to not operate 

normally or work unstably. In some cases, voltage sags may 

cause problems such as motor overload, equipment startup 

difficulties, and electronic equipment failure. 

 

2) Production shutdown: In industrial production 

environments, voltage sags can cause equipment or 

production line shutdowns. Some equipment may require a 

stable voltage supply to operate properly. If a voltage sag 

causes equipment shutdown, it will cause production 

interruptions, resulting in production losses and increased 

downtime. 

 

3) Data loss: For computer systems, servers, data centers and 

other equipment, voltage sags may cause data loss or damage. 

Unstable voltage supply may cause computer system crashes 

or storage device failures, resulting in the loss or 

irrecoverable loss of important data. 

 

4) Unstable operation: Voltage sag may cause unstable 

operation of the power system as a whole. When the voltage 

drops, the frequency of the power system may also be 

affected, which may cause other equipment or power system 

components to fail to operate normally. This may trigger a 

chain reaction and affect the operational stability of the entire 

power system. 

 

2.2 DBSCAN algorithm  

 

DBSCAN is one of the most typical density-based clustering 

algorithms. Its main idea and implementation method are as 

follows: 1) Draw a circle with each data point as the center 

and the neighborhood radius (ε) as the radius. The area 

enclosed by the circle is the neighborhood of the data point; 

2) Traverse the data, find high-density points, and gradually 

connect the high-density points in its neighborhood; 3) Find 

low-density points, connect them to the nearest high-density 

points in the neighborhood, and call them boundary points; if 

there are no high-density points in its neighborhood, the point 

is noise; 4) The connected points form a cluster and clustering 

is completed [16] . If the number of points in the 

neighborhood of a data point is greater than or equal to the 

density threshold (δ), then the point is a high-density point. 

Otherwise, it is a low-density point. The values of ε and δ 

need to be set manually. 

This paper selects DBSCAN as the temporary drop clustering 

because DBSCAN, as a clustering algorithm, has the 

following advantages and can better cluster the temporary 

drop data of this experiment: 

 

1) Density-based: The DBSCAN algorithm divides data 

points into core points, boundary points, and noise points 

through density-based clustering. Core points are data points 

with sufficient density within a given radius ε, boundary 

points are non-core points adjacent to core points within a 

given radius ε, and noise points are data points that are neither 

core points nor boundary points. 

 

2) Clusters of any shape can be found: DBSCAN algorithm 

can find clusters of any shape, regardless of the distribution of 

data points. It forms clusters by connecting data points that 

are connected by density, without pre-specifying the number 

or shape of clusters. 

 

3) Strong robustness: The DBSCAN algorithm is highly 

robust to noise data. Noise data points are marked as noise 

points in the clustering results and will not be classified into 

any valid clusters, thus reducing the impact of noise on the 

clustering results. 

 

4) No need to set the number of clusters in advance: Unlike 

some traditional clustering algorithms (such as K-means), 

DBSCAN does not require the number of clusters to be 

specified in advance. It controls the compactness of 

clustering by setting two parameters, namely ε (neighborhood 

radius) and MinPts (minimum number of neighborhood 

points). 

 

5) Sensitive to outliers: The DBSCAN algorithm can identify 

outliers and mark them as noise points. This is useful for tasks 

such as anomaly detection and data cleaning, and can filter 

out data points that do not conform to the clustering rules. 

 

6) Efficiency: The DBSCAN algorithm has a low time 

complexity and can run efficiently on larger data sets. It 

utilizes the density information of data points and improves 

the efficiency of the algorithm by reducing the number of 

traversals of data points. 

 

2.3 Voltage sag homology detection features 

 

This paper selects three features of the data set, namely, the 

grid topology monitoring nodes, the sag start time and the sag 

amplitude, to perform homology identification. 

 

1) Monitoring nodes: When naming monitoring nodes, the 

power grid topology often names monitoring nodes with 

similar topological distances. When a voltage sag event 

occurs, it usually spreads from one monitoring node to other 

nodes, so the sag events that occur at several nodes that are 

relatively close are likely to have the same source as the sag 

events that occur at the monitoring node. Therefore, using the 

monitoring node as a homologous identification feature can 

help group sag events of the same source together. 

 

2) Sag start time: The voltage sag start time is associated with 

the propagation path of the fault. If the event occurs in a 

specific area and then voltage sags occur in other areas of the 
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power system, this may mean that the sag propagates in the 

power system. Therefore, it is meaningful to analyze the start 

time of the voltage sag event during the same source 

identification process. 

 

3) Voltage sag amplitude: Voltage sag amplitude can provide 

clues to help determine the source type of the sag. Different 

types of sag sources (such as short circuit faults, load 

changes, equipment failures) usually cause voltage drops to 

varying degrees. By analyzing the sag amplitude, we can 

preliminarily infer the possible source type and identify the 

same source of the sag. 

 

3. Experimental Results and Analysis 
 

3.1 Dataset Introduction  

 

This experiment uses 10049 sag data recorded by a provincial 

power company for DBSCAN algorithm clustering analysis. 

The sag data records the data of sag events from November 1, 

2022 to November 30, 2022, including nine descriptive 

features: monitoring node, bus, branch, event type (voltage 

swell/voltage sag), occurrence time, duration, characteristic 

amplitude, phase difference, and analysis (ITIC tolerance 

zone event/ITIC over-upper limit event/ITIC over-lower limit 

event). The data is sorted in order from small to large 

according to the occurrence time. The experiment selects the 

DBSCAN clustering algorithm, and uses the three 

dimensions of monitoring node, occurrence time, and 

characteristic amplitude of the sag data as the characteristic 

variables to measure the same sag source event. The 

occurrence time of sag events of the same sag source is 

generally concentrated within a few minutes, and the 

characteristic amplitude values are similar. According to this 

clustering criterion, the 10049 data are first manually labeled, 

and a total of 257 homologous events are labeled, which are 

used as the true labels of the algorithm to calculate the 

accuracy of the algorithm. 

 

3.2 Data preprocessing  

 

The experiment first selected the three required features from 

the features provided by the data set: monitoring nodes, 

occurrence time, and feature amplitude, and then 

preprocessed the three features respectively. For string-type 

monitoring nodes, labelEncode encoding is used to convert 

the node name into a number starting from 0, and then the 

data is reduced by 100 times; for the occurrence time feature, 

it is first converted to a timestamp type, and then the 

maximum and minimum standardization MinMaxScaler is 

used to convert the data into a range of 0-500; for the feature 

amplitude, its data is reduced by 100 times. Finally, the 

three-dimensional features to be involved in the clustering 

algorithm are obtained. The flowchart of data preprocessing 

is shown below Figure 1. 

 

 

 
Figure 1: Voltage sag homologous detection flow diagram 

 

3.3 Algorithm parameter settings  

 

The DBSCAN algorithm needs to set two parameters, namely 

the neighborhood radius and the density threshold (i.e., the 

minimum number of sample points in a cluster). In order to 

ensure that the algorithm can distinguish the model outliers, 

the density threshold is selected as 2 in this experiment, and 

the parameter neighborhood radius should not be set too 

large. If the neighborhood radius is too large, all data will be 

clustered into one category, and if it is too small, the data will 

be clustered into multiple categories, resulting in inaccurate 

results. In order to ensure the accuracy of the experimental 

clustering results, this experiment uses accuracy and purity as 

reference functions for selecting neighborhood radius. 

Accuracy and purity both represent the ratio of the number of 

samples with accurate clustering to the total number of 

samples, but a higher accuracy does not mean a better 

clustering effect, because it ignores the differences between 

classes. Therefore, the two evaluation indicators of accuracy 

and purity are combined to iteratively select different 

neighborhood radii, calculate the accuracy and purity of the 

clustering results, and finally select the most suitable 

neighborhood radius for the final clustering effect evaluation 

and analysis. 

 

3.4 Algorithm Evaluation Metrics 

 

Since this experiment has manually annotated labels, six 

external clustering indicators with real labels are selected to 

detect the clustering effect, namely purity, normalized mutual 

information, adjusted mutual information, adjusted Rand 

coefficient, Fowlkes-Mallows index and accuracy [17]. 

 

1) Purity: Purity is an indicator used to measure the purity of 

clustering results. It calculates the sum of the most common 

true labels in each cluster in the clustering result and divides it 

by the total number of samples. The value of Purity ranges 

from 0 to 1. The larger the value, the purer the clustering 

result. 

 

2) NMI is an indicator based on information theory that 

measures the similarity between clustering results and true 
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labels. It measures the mutual information between clustering 

results and true labels, while taking into account the entropy 

of clustering results and true labels. The value of NMI ranges 

from 0 to 1. The larger the value, the more consistent the 

clustering results are with the true labels. 

 

3) AMI (Adjusted Rand index), adjusted mutual information, 

is an improved NMI. AMI is calculated based on mutual 

information in information theory, but is adjusted to address 

the deviation caused by different numbers of clustering 

results or random label assignment. The calculation method 

of AMI takes into account the pairing between two clustering 

results and the entropy of each clustering result to measure 

the similarity between them. The value range of AMI is 

between 0 and 1. The closer the value is to 1, the more 

consistent the clustering result is with the true label. 

 

4) ARI (Adjusted Rand index), ARI is an indicator used to 

measure the similarity between clustering results and true 

labels. It takes into account all pairs of classification results 

and adjusts them according to their consistency. The value 

range of ARI is between -1 and 1. The closer the value is to 1, 

the more consistent the clustering result is with the true label. 

 

5) FMI (Fowlkes-Mallows index): FMI is an indicator based 

on the precision and recall of clustering results, which is used 

to evaluate the similarity between clustering results and true 

labels. It calculates the ratio between the number of pairs 

between members of the same category in the clustering 

results and the number of pairs between members of the same 

category in the true labels. The value range of FMI is between 

0 and 1. The larger the value, the more consistent the 

clustering results are with the true labels. 

 

6) ACC (Accuracy, ACC), clustering accuracy, is used to 

compare the obtained labels with the true labels provided by 

the data. The value range is between 0 and 1. The larger the 

value, the more consistent the clustering result is with the true 

label. 

 

3.5 Training process 

 

The entire experiment was implemented in the Jupyter 

notebook platform. The training environment is as follows: 

The processor model is Intel(R) Core(TM) i5-8300H CPU @ 

2.30GHz, the processor frequency is 2.30 GHz, and the 

memory capacity is 16 GB. 

 

Considering that the data feature values are small, the initial 

value of the function iteration radius is set to 0.01, the step 

size is 0.01, and the iteration end radius is 0.2. The iteration 

results are shown in Figure 2. As the neighborhood radius 

increases, the clustering accuracy continues to increase, while 

the purity shows a trend of first increasing and then 

decreasing. It is easy to see from the figure that when the 

radius reaches 0.05, the two curves intersect, so the 

experiment sets the neighborhood radius of DBSCAN to 

0.05. 

Figure 2: Neighborhood radius optimization line chart 

 

3.6 Training Results and Analysis 

 

After selecting the neighborhood radius, the experimental 

data is clustered again, and the occurrence time dimension of 

the first 400 data is selected for two-dimensional scatter 

display, as shown in Figures 3-2 and 3-3. As can be seen from 

the Figure 3, the algorithm clusters the temporary drop event 

data with an occurrence time of less than two minutes into 

one category, and the clustering effect is highly correlated in 

the time dimension, which is consistent with the 

identification criterion of the same source of temporary 

drops. 

  
(a) 1-200 effect distribution diagram  

 

 
 (b) 200-400 effect distribution diagram  

Figure 3: Homologous detection effect distribution diagram 

 

At the end of the experiment, six external clustering 

indicators with real labels were selected as the measure of 

clustering effect, namely purity, normalized mutual 

information, adjusted mutual information, adjusted Rand 

coefficient, Fowlkes-Mallows index and accuracy. The six 

clustering indicator values of this experiment are shown in 

Table 1. According to the clustering indicator results, all 

clustering indicators have reached more than 97%, indicating 

that the distribution of predicted labels is basically consistent 

with that of real labels, the clustering effect is excellent, and 

the requirements of clustering homologous events are met. 
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Table 1: Homologous detection indicator results 
  Purity NMI AMI ARI FMI ACC 

Result 0.977 0.982 0.98 0.974 0.975 0.973 

 

4. Conclusion 
 

This paper applies the DBSCAN algorithm to the process of 

identifying the source of voltage sag. The DBSCAN 

algorithm can not only identify outliers, but also does not 

require the number of clusters to be set in advance, which can 

well identify the source of sag data. During the experiment, 

the sag data was reasonably preprocessed through feature 

engineering, and the DBSCAN neighborhood radius 

parameter with the best clustering effect was selected through 

iteration, so that the clustering effect is even better than the 

result of manual labeling, achieving the goal of using the 

DBSCAN algorithm to identify the source of sag, while 

providing a basis for the prevention and control of subsequent 

voltage sags and improving the stability of the power system. 
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